Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Long-Guan Zhu^a* and Hong-Ping Xiao^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bSchool of Chemistry and Materials Science, Wenzhou University, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.040 wR factor = 0.105 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aquabis(*p*-chlorobenzoato)(1,10-phenanthroline)copper(II)

The title compound, $[Cu(C_7H_4ClO_2)_2(C_{12}H_8N_2)(H_2O)]$, is a monomer in which the *p*-chlorobenzoate ligand is synthesized *in situ* from 4-carboxybenzeneboronic acid. The coordination around the Cu^{II} atom is square pyramidal. Two monodentate benzoate ligands are *cis*-arranged. Hydrogen bonds occur between coordinated water molecules and benzoate ligands, while π - π stacking interactions consolidate the crystal packing.

Comment

Four *p*-chlorobenzoate–copper(II) complexes (Zhang *et al.*, 2000; Uggla *et al.*, 1973; Turpeinen *et al.*, 1999, 2000) have been reported in the Cambridge Structural Database (CSD, May 2006 update; Allen, 2002) and these complexes were directly synthesized using *p*-chlorobenzoate. In exploring metal complexes with 4-carboxybenzeneboronic acid (Hcbba), Hcbba can be converted to benzoate under hydrothermal conditions (Zhu & Hu, 2006). Therefore, we used the typical method of mixing solutions at room temperature to obtain cbba complexes. Unexpectedly, Hcbba in the presence of CuCl₂ can be converted to the *p*-chlorobenzoate ligand (see reaction scheme). We present here the title complex, (I).

© 2006 International Union of Crystallography All rights reserved The title compound is a mononuclear complex in which the copper(II) atom is coordinated by two N-atom donors from

Received 10 July 2006 Accepted 31 July 2006 one 1,10-phenanthroline ligand, two O atoms from two *p*chlorobenzoate ligands, and an aqua O atom (Fig. 1 and Table 1). The two *p*-chlorobenzoate ligands are coordinated to the metal atom in a monodentate manner. The coordinated water molecule acts as double donor to the carboxylate groups of two *p*-chlorobenzoate ligands, forming bifurcated hydrogen bonds (Table 2). There are strong π - π stacking interactions involving 1,10-phenanthroline and *p*-chlorobenzoate, assembling the complexes into a one-dimensional chain (Fig. 2). The centroid-centroid distances are 3.6140 (18), 3.5211 (19) and 3.5920 (19) Å for $Cg1\cdots Cg4^{i}$, $Cg2\cdots Cg4^{ii}$ and $Cg3\cdots Cg4^{i}$, respectively [where Cg1 is the centroid of atoms N1/C1-C4/ C11, Cg2 of N2/C7-C10/C12, Cg3 of C4-C7/C11/C12 and Cg4of C21-C26; symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z].

Experimental

A mixed-solvent solution (30 ml of dimethylformamide and 20 ml of water) of $CuCl_2 \cdot 2H_2O$ (0.092 g, 0.54 mmol), 1,10-phenanthroline monohydrate (0.102 g, 0.51 mmol) and 4-carboxybenzeneboronic acid (0.104 g, 0.63 mmol) was stirred for 1 h and filtered. The resulting solution was set aside and allowed to evaporate. After one month, dark-blue block-shaped crystals of (I) were obtained.

Crystal data

4081 reflections

331 parameters

$\begin{split} & [\mathrm{Cu}(\mathrm{C}_{7}\mathrm{H}_{4}\mathrm{ClO}_{2})_{2}(\mathrm{C}_{12}\mathrm{H}_{8}\mathrm{N}_{2})(\mathrm{H}_{2}\mathrm{O})] \\ & M_{r} = 572.86 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 7.9427 \ (7) \ \text{\AA} \\ & b = 10.7301 \ (9) \ \text{\AA} \\ & c = 14.8175 \ (12) \ \text{\AA} \\ & \alpha = 100.404 \ (1)^{\circ} \\ & \beta = 95.328 \ (1)^{\circ} \\ & \gamma = 108.582 \ (1)^{\circ} \end{split}$	$V = 1161.90 (17) Å^{3}$ Z = 2 $D_{x} = 1.637 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation \$\mu\$ = 1.21 mm^{-1}\$ T = 295 (2) K Block, dark blue $0.25 \times 0.21 \times 0.16 \text{ mm}$
Data collection Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.751, T_{\max} = 0.830$	6190 measured reflections 4081 independent reflections 3751 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 25.1^{\circ}$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.106$ S = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0608P)^{2} + 0.8244P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

View of the one-dimensional π - π stacking chain. H atoms have been omitted.

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	2.297 (2)	Cu1-N1	2.014 (2)
Cu1-O3	1.948 (2)	Cu1-N2	2.023 (2)
Cu1-O5	1.980 (2)		
O3-Cu1-O5	94.73 (9)	N1-Cu1-N2	81.56 (9)
O3-Cu1-N1	89.28 (8)	O3-Cu1-O1	100.60 (8)
O5-Cu1-N1	164.96 (9)	O5-Cu1-O1	90.81 (8)
O3-Cu1-N2	167.24 (9)	N1-Cu1-O1	102.72 (8)
O5-Cu1-N2	91.99 (9)	N2-Cu1-O1	90.12 (8)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O5-H5A\cdots O1\\ O5-H5A\cdots O2\\ O5-H5B\cdots O3\\ O5-H5B\cdots O4\\ \end{array}$	0.86 (3) 0.86 (3) 0.85 (3) 0.85 (3)	2.61 (4) 1.71 (3) 2.56 (4) 1.804 (17)	3.053 (3) 2.554 (3) 2.890 (3) 2.620 (3)	113 (3) 170 (4) 104 (3) 161 (4)

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.33 \text{ e } \text{\AA}^{-3}$

All C-bound H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The two water H atoms were found in a difference Fourier map and refined with a distance restraint of O-H = 0.85 (1) Å, with $U_{iso}(H) = 0.08$ Å².

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the National Natural Science Foundation of China (grant No. 50073019), and the Analytical and Measurement Fund of Zhejiang Province.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02a) and SMART (Version 5.618). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Turpeinen, U., Hamdanen, R. & Mutikainen, I. (1999). Acta Cryst. C55, 50–52.
 Turpeinen, U., Klinga, M., Mutikainen, I. & Hamdanen, R. (2000). Z. Kristallogr. New Cryst. Struct. 215, 418–419.
- Uggla, R., Orama, O. & Klinga, M. (1973). Suom. Kemistil. B, 46, 43.
- Zhang, C. G., Leng, Y. J., Yan, D. Y., Sun, J. & Kong, X. F. (2000). J. Chem. Crystallogr. 30, 35–38.
- Zhu, L.-G. & Hu, M.-L. (2006). Acta Cryst. E62, m653-m655.